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Abstract— Navigation is one of the most basic and widely
studied problems in the field of autonomous robots. The scien-
tific community assumes the navigation task as a combination
of three fundamental robotics skills, which can be summarized
in i) self-localization; ii) path-planning; and iii) map building.
Traditionally, these problems have been addressed using a
geometric world model, that is, a 2D or 3D map representation
of the environment. This tendency is now changing, and the
scientific community is experiencing an increasing interest in so-
called semantic solutions, which integrate semantic knowledge
and geometrical information. In addition, new generation of
robots should be able to work also taking into account social
conventions, which is commonly named social navigation. This
paper describes the ongoing work of a new proposal for a
navigation paradigm where the semantic knowledge of the
robot’s surroundings and different social rules are used in
conjunction with the geometric representation of the environ-
ment. The proposal uses CORTEX, an agent-based Robotics
Cognitive Architecture which provides a set of different agents
in the deliberative-reactive spectrum. This paper introduces
three cases of use that will be tested in two different social
robots within the NAVLOC project1.

I. INTRODUCTION

In the not too distant future, social robotics will be helpful
in everyday life. Social robots will perform typical human
tasks in offices, hospitals, homes or museums. In these
complex and dynamic scenarios people and objects usually
move around the robot, complicating robot capabilities for
navigating. Thus, in the social context where these robots are
going to work, there exist different skills that are expected,
such as human or object avoiding collisions, localization,
path planning or map building. These robot’s skills typically
have been addressed in the literature using representations
of the spatial structure of the environment, however this
tendency is now changing, and the scientific community is
experiencing an increasing interest in so-called semantic so-
lutions, which integrate semantic knowledge and geometrical
information.

In the last years, the term social navigation in robotics,
which is expected to become an increasingly important task
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Fig. 1. Brief description of the semantic social navigation problem. The
robot has to choose the best route and navigate from the kitchen to the
living-room by using its semantic knowledge (e.g., cups, fire extinguisher
and fridge) and social rules (e.g., humans along the path)

in next social robots generation [1], has been introduced as
a way to relate the robot navigation in human scenarios
and human-robot interaction. New generations of social
robots should be able to generate different socially accepted
routes during an interaction with humans and also exhibit
proactive social behaviors during the navigation [2] (e.g., to
gracefully approach people, or to wittily enter and exit from
a conversation).

Fig. 1 illustrates the problem to solve: the robot located
in the kitchen has to choose the best route and navigate
from its pose to the living-room along a complex dynamic
environment with people. The semantic social navigation
approach described in this paper firstly introduces a high-
level and long-life knowledge captured by the robot from
the environment (cups, fridge or humans in the figure), in
a similar way that the human point-of-view, and after, it
introduces socially accepted rules to the semantic knowledge
during the planning and navigation tasks.

The navigation paradigm described in this paper uses the
cognitive architecture CORTEX [3]. CORTEX is based on
a set of agents (i.e., semi-autonomous functional units that
collaborate by means of a common representation in their
pursue of a common goal) that can run anywhere in the
deliberative-reactive spectrum. In this cognitive architecture
there are navigation, perceptual and human-robot interaction



agents, among others, thereby facilitating the combined use
of semantic knowledge and social rules. In the new pro-
posal of navigation, perceptual agents are used to acquire
information from the environment and to detect objects from
it (semantic knowledge), human-robot interaction agents are
used to infer or apply social rules, and navigation agents are
used to provide skills to navigate in a secure way.

This article is structured as follows: Section II provides
a brief summary about similar works in this field of re-
search. In Section III, a description of CORTEX cognitive
architecture and the hybrid representation are made. Section
IV provides the proposal description along the main agents
involved. The description of the semantic social navigation
paradigm is described in Section V. Finally, the main con-
clusions are detailed in Section VII.

II. RELATED WORK

Classical navigation algorithms use spatial representation
of the robot’s surrounding, that is, the path-planning or the
localization problems require a geometric map of the envi-
ronment. Recently, several advances in semantic navigation
have been achieved. In fact, social robots that incorporate
skills for task planning and storing semantic knowledge
in their maps are commonly used (e.g., classification of
environments, indoor or outdoor, spaces, such as rooms,
corridors or garden, and labels of places and/or objects) [4],
[5]. By using this semantic knowledge, robots are able to
navigate or planning other tasks. Some works autonomously
acquire this semantic information by analyzing data from
robot’s sensors, or by using voice interactions with robots
(see Kostavelis’s survey [4]).

Social navigation started being extensively studied in the
last years and several methods have been proposed from then.
Most of the solution are based on using a classic navigation
algorithm, and therefore adding social conventions and/or
social constraints. According to this paradigm, some authors
have proposed models of social rules by using cost functions.
In [6], for instance, the authors use a classical A* path
planner in conjunction with social conventions, such as to
pass humans on the right. In the Traberg et al.’s work [7],
they use potential fields and a proxemics model2. Other
solutions for social navigation use the detection of human
intentions in order to model the social navigation. In [9],
authors propose the Modified Social Force Model (MSFM),
basically a local navigation method where the path is able
to be modified after analyzing the human intention.

Different proposals can be found in the literature about
cognitive architectures and the kind information to use,
most of them by separately storing symbolic and metric
information. Symbolic knowledge representation, such as the
works proposed in [10] and [11], has been at the core of
Artificial Intelligence since its beginnings. Most recently,
solutions that integrate spatial and symbolic knowledge in
a unified representation are studied in the literature (deep

2Proxemics is defined as the study of humankinds perception and use of
space [8]

representation [12]). Examples of these deep representations
are the works in [12], [13], [3].

III. DEEP STATE REPRESENTATION AND CORTEX

The concept of deep representations was initially de-
scribed by Beetz et al. [12] and it advocates the integrated
representation of robots knowledge at various levels of
abstraction in a unique, articulated structure such as a graph.
Based on this concept, a new shared representation, Deep
State Representation (DSR), to hold the robots belief as
a combination of symbolic and geometric information, is
proposed in [3]. This new structure represents knowledge
about the robot itself and the world around it, in a flexible
and scalable way. More formally, in [3] DSR is defined
as a directed multi-labelled graph where nodes represent
symbolic or geometric entities and edges represent symbolic
and geometric relationships.

The robotics cognitive architecture CORTEX is defined
structurally as a configuration of software agents connected
through DSR. An agent within CORTEX is defined as a
computational entity in charge of a well defined functionality,
whether it be reactive, deliberative of hybrid, that interacts
with other agents inside a well-defined framework, to enact
a larger system. The CORTEX architecture, which has been
compared with other similar architectures in [3], is imple-
mented on the top of the component-oriented robotics frame-
work RoboComp [14]. In CORTEX, higher-level agents
define the classic functionalities of cognitive robotics archi-
tectures, such as navigation, manipulation, person perception,
object perception, dialoguing, reasoning, planning, symbolic
learning or executing. These agents operate in a goal-oriented
regime [10] and their goals can come from outside through
the agent interface, and can also be part of the agent normal
operation.

In Fig. 2 an overview of the DSR and its location within
the cognitive architecture CORTEX is drawn. Different
agents, such as navigation, person detector or planner are also
shown. DSR is illustrated as a a graph where all the robot
knowledge about its surrounding is represented. The next
sections describe the design of the semantic social navigation
system using the cognitive architecture CORTEX, analyzing
the agents involved and the relationships between them in
three different cases of study.

IV. AGENTS

In the proposal of a new social and semantic naviga-
tion paradigm for robots, different specific agents within
CORTEX are involved. First, in the higher layer of the
architecture the robot must have the capability of detect-
ing objects in the path and updating the symbolic model
accordingly. Additionally, the skill of detecting humans is
also mandatory because robots need to know about humans
to get commands, avoid collisions and provide feedback.
The final, and most important agent for social navigation, is
the one implementing the navigation algorithms that allows
robots to navigate from a point to another in a secure
and social manner (implementation of the path-planning,



Fig. 2. An overview of the DSR and its location within the cognitive
architecture CORTEX [3]

Fig. 3. Main agents within CORTEX involved in the semantic social path
planning described in this proposal are highlighted in red.

localization and SLAM algorithms, among other). In the next
subsections, a brief description of the main agents involved
in the proposal is provided. These agents are highlighted
in Fig. 3, which illustrates the current CORTEX cognitive
architecture [3].

A. Object detection and representation

The object perception agent is in charge of recognizing
and estimating the pose of objects and visual marks in the
environment. For each object or mark detected it describes
within the model (DSR) not only the pose but also its type.

These kind of elements are useful for the robot in several
social scenarios. For instance, humans will seldom ask the
robot to go to a coordinate because they do not necessarily
need to know the reference frame used by the robots and,
more importantly, because it is not comfortable for humans
to provide targets in such a way.

Synthetic visual marks are detected using the AprilTags
library [15]. Arbitrary visual marks will be detected using
the OpenCV library [16] and 3D objects are currently being
detected using an object recognition pipeline based on the
PointClouds library [17]. The poses of the detected objects
are referenced to known objects (in the DSR) that support
them, such as a known table under a target cup. Once
referenced, the kinematic relations embedded in DSR allow

the computation of any object’s pose from any reference
frame easily.

B. Person detector

Person detector is the agent responsible for detecting and
tracking the people in front of the robot. Humans do not
usually enjoy its personal space being invaded by robots.
The presence of humans in the robots’ path or in their
environment may determine changes in the navigation route
in order to make it socially acceptable.

The person detector agent acquires the information using
an RGBD sensor. For each detected person the agent inserts
in the DSR the pose of its torso, its upper limbs, and the head.
The lower limbs are ignored because they do not provide as
much social information as the head, the upper limbs and
the torso do [3]. These elements can be used to infer the
objects referenced by the humans when they point or look at
them. The torso is used to avoid entering the personal space
of humans and as an indicator of the possible directions in
which they might walk.

C. Conversation

The conversation agent performs human-robot interaction
(HRI). In social environments, HRI provides tools to the
robot and/or human to communicate and collaborate. There-
fore, this agent is used to include information in the model
when humans tell robots about unknown objects and to
properly acquire commands. Automatic Speech Recognition
and Text-to-Speech algorithms allow robot to both send
and receive information to/from humans in the environment
during its social navigation.

D. Mission

This agent is used as a means to provide missions to the
executive agent and to visualize the DSR. It has two graphic
views. A graph-like view and a 3D geometric view [3].

E. Executive

The Executive is responsible of planning feasible plans to
achieve the current mission, managing the changes made to
the DSR by the agents as a result of their interaction with the
world, and monitoring the execution of the plan. The active
agents collaborate executing the actions in the plan steps
as long as they consider them valid (it must be taken into
account that agents might have a reactive part). Each time
a structural change is included in the model, the Executive
uses the domain knowledge, the current model, the target and
the previous plan to update the current plan accordingly. The
Executive might use different planners. Currently AGGL [18]
and PDDL-based [19] planners are supported.

F. Navigation

Navigation is in charge of performing local navigation
complying with social rules and including the location of
the robot in the DSR. Global path planning is performed by
the symbolic planner used by the executive.



Two poses are maintained by the robot: the pose obtained
from the local odometry, and the pose provided by a local-
ization algorithm based on external geometric laser features.
Given their properties, each of these poses is useful for
a particular purpose. Odometry provides good information
relative to the robot’s position in the short term, while
localization provides good information for mid and long term
positioning. Additionally, the space walked by the robot in
the last seconds is also included.

Regarding localization algorithms, the navigation agent is
algorithm-independent. It has been used with different algo-
rithms showing different properties, which can be selected
to fit different kinds of environments.

While it can be used with any local navigation system,
the navigation agent has been only tested with the path-
planning algorithm proposed in [20], an algorithm based
on the elastic-band representation, with successful results.
The navigation paradigm presented in this paper extends the
geometrical path-planning to a social semantic algorithm,
which is described in the next section.

V. SOCIAL SEMANTIC NAVIGATION IN CORTEX
COGNITIVE ARCHITECTURE

In this section the semantic social navigation paradigm
is described. An overview of the system is shown in Fig.
4. On the top of the architecture is the global semantic
path planner, followed by a local geometrical path planner.
Both of them are affected by the social navigation model.
The semantic path planner chooses the optimal route, that
consists of a list of waypoints. These waypoints along the
path are characterized by a set of labeled objects in the
map that the robot should perceive. Then, the robot plans
a local geometrical navigation from its current pose to the
next waypoint in the list, and looks for the objects in the path.
Finally, this path is affected by the social navigation model,
and if necessary, the local (or global) route is re-planned. All
the agents within CORTEX described in the previous section
are concurrently running in the navigation process.

A. Semantic Path Planning

Global path planning at a symbolic level is performed
by the planner included in the executive. The semantic path
planner is based on the use of a two-hierarchies architecture,
similar to that one presented in [5]. Both, the spatial and se-
mantic properties of each object within DSR allow the plan-
ner to choose the best global route. Let O = {o1, o2, ..., on}
being the list of n objects oi within the semantic map of the
robot, that is, its high level and long-term knowledge. Each
object oi is characterized as oi = {mi, si, li}, where mi

is the metric representation of the object (i.e., rotation and
translation matrices from its parent node), si is the semantic
information associated to the object (i.e., label) and li is
the mesh (i.e., 3D point cloud). Each object has a parent
node, which usually represents the room where the object
is located. Rooms are also nodes of the graph, that are
connected if they are sharing a door. Thus, the semantic path
planning algorithm chooses the best route from the graph,

Fig. 4. The overall blocking diagram of the proposed system.

Fig. 5. Brief description of the DSR for the study cases described in this
paper.

that is, the list of rooms that the robot has to visit. Therefore,
the planner generates a list of waypoints and includes the
path within robot’s attributes in DSR (i.e., all the agents
in the architecture are able to visualize it). This path is
characterized by a set of n waypoints, ΩR = {ρ1, ρ2, ...ρn}
and j ordered objects, ΓR =

{
o′1, o

′
2, ...o

′
j

}
, being o′j ∈ O,

that the robot should perceive during the navigation. Thus,
the global navigation is achieved between consecutive rooms
according to the path Ω, where the robot has to detect the
objects from ΓR. In Fig. 5, an example of DSR is shown,
where both semantic and geometrical information of objects,
humans, rooms and the robot are also illustrated.



B. Geometrical path Planning

Once the robot is assigned the path and ΓR, the geometri-
cal path-planner should accomplish the navigation between
two consecutive waypoints and look for two consecutive
objects, o′k−1 and o′k. The geometrical path-planning algo-
rithm of the proposal is based on the use of graphs as a
representation of free space and of elastic-bands [20] as an
adaptable representation of the current path. Elastic bands
work as a glue filling the gap between the internal represen-
tation of the path and the constraints imposed by the world
physics. In order to build a graph representing the overall free
space, the probabilistic road map algorithm, PRM, is used
[21] along with a preexisting map and a collision detection
algorithm. To complete this schema, the RRT algorithm [22]
is also included in the system to complete the paths when
unconnected islands remain in the PRM graph or to connect
the robot’s current position and robot’s final position with
nodes in the graph. The object perception agent is directly
involved in the path following process: when the robot
detects the object o′k (or a list of objects) at the waypoint
ρl, a new target is generated ρl+1, being the new local route
defined by the nodes ρl and ρl+1.

C. Social Navigation Model

In order to mathematically formulate the socially-
acceptable navigation algorithm, let denote H =
{H1, H2, ...Hn} the set composed by n humans in the
environment. Each human, Hi, in the DSR is represented
by the pose of its torso, its upper limbs, and the head (see
Fig. 5). These elements can be used for defining a personal
space θi and a social interaction intention ρi. Both θi and ρi
are detected by the human detector agent, and are included
in the DSR as information associated to human Hi. On
one hand, and similar to the work presented in [1], θi is
defined as Gaussian Mixture Model of two 3D Gaussian
functions, one for the front of the individual, and other for
its rear part. By adjusting the covariance matrices of these
two gaussians, one can modify the personal space model.
On the other hand, ρi describes the different cases where
a human wants or not to interact with the robot during the
path: i) human does not want to interact (i.e., human is
considered as obstacle); ii) human wants to interact with the
robot, and then, the robot has to approach human, interact
and finish the communication. In this respect, depending of
the ρi value, the final path may be modified. For instance,
if the human is considered as obstacle, the graph in the
geometrical local navigator has to be updated in order to
avoid this new obstacle (see Fig. 6(a)). On the contrary, if
the human wants to interact with the robot, a new object
o′k = Hi is included in the list of nodes to reach, being Hi

the next target (see Fig. 6(b)).

VI. CASES OF STUDY

Within the ’BS-NAVLOC’ project, this paper proposes
three different cases of study. All of them are examples
of robots navigating in indoor environments, and the main
goal is to demonstrate that the semantic social path planning

(a) (b)

Fig. 6. Social navigation model proposed in this paper: a) human does not
want to interact with the robot; and b) the human wants to interact.

(a) (b)

Fig. 7. The semantic social navigation within CORTEX is going to be
integrated in two different robots: a) DOKBot robot, from VerLab research
group at the University Federal of Minas Gerais; b) Shelly robot, from
RoboLab research group at the University of Extremadura.

algorithm proposed in this paper, using the CORTEX cog-
nitive architecture, may be performed in different robotics
platforms in a near future and with successful results. In this
section, the ongoing work is presented, describing briefly the
DSR and the relationships between the involved agents.

The proposal of semantic social navigation paradigm is
going to be tested in two different robots (Fig. 7). The
first robot is the DOKBot, from VerLab at the University
Federal of Minas Gerais, which consists of a Pioneer 2-AT
robotics platform equipped with different perceptual sensors,
such as laser, RGB cameras and microphones (see Fig.
7(a)). This robot was originally designed for semiautomatic
telepresence purposes. The second autonomous system is
Shelly, an anthropometric social robot that is currently being
used in RoboLab, at the University of Extremadura. This
robot was designed to help in daily life tasks. It is composed
of an omnidirectional base, two 7-DOF arms with two-
fingered grippers and a RGB-D camera attached to a pan-tilt-
yaw structure. It has another RGB-D camera on the upper
part of the torso which is used to detect human bodies and
a lidar for navigation. This robot is illustrated in Fig. 7(b).

Next, the experimental scenarios are described. They have
been designed from low-complexity to high-complexity lev-
els:
• Semantic Navigation using CORTEX. In this experi-



Fig. 8. Agents involved in the cases of study described in this paper. a)
semantic navigation; b) semantic social navigation; and c) semantic social
navigation with HRI

ment, the robot chooses the best route from a room to
another. In this scenario, there is not people in the path,
and thus, only the semantic knowledge of the rooms is
used. Fig. 8 shows the agents involved in this scenario
(red colour in the figure).

• Semantic social Navigation. This experimental scenario
consists on a semantic social navigation. Similar to
the previous case of study, the robot has to navigate
between two different rooms in an indoor and human
environment. In this respect, people walk or stand in the
robot path, and thus, the robot has to modify the route in
order to be socially accepted. The set of agents involved
in this case of study is highlighted in blue colour in Fig.
8.

• Semantic social Navigation with HRI In this case of
study, the robot first interacts with the human in order
to know what is the next room to visit, and also, other
humans interact with the autonomous agent during the
path. In this HRI, the robot may modify partial or
fully its route. Finally, in Fig. 8, the agents involved
in CORTEX are highlighted in gray colour.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presents the ongoing work, within the
NAVLOC project, of a proposal for the design of a semantic
social navigation system. The approach is based on the use of
a global semantic path-planner in conjunction with a social
navigation model. The theoretical proposal achieves the main
goal of this kind of algorithm, that is, the robot is able to
choose the best route from its current position to another
position in a dynamic and complex scenario by using its
high level knowledge and by applying social rules in order
to be socially accepted. High functionality and robustness
are guaranteed by using the cognitive architecture CORTEX
and the Deep State Representation.

As it was aforementioned, this paper describes the ongoing
work, where three different experimental scenarios are also
described in order to test the proposed social navigation algo-
rithm in future works. Currently, both spanish and brasilian
researching teams, are working in integrating CORTEX in
the two robots presented in this paper, Shelly and DOKbot.
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